Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells
Chandra Sekhar Boddupalli, … , Susan M. Kaech, Madhav V. Dhodapkar
Chandra Sekhar Boddupalli, … , Susan M. Kaech, Madhav V. Dhodapkar
Published September 12, 2016
Citation Information: J Clin Invest. 2016;126(10):3905-3916. https://doi.org/10.1172/JCI85329.
View: Text | PDF
Research Article Immunology Article has an altmetric score of 33

ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells

  • Text
  • PDF
Abstract

Immune surveillance in tissues is mediated by a long-lived subset of tissue-resident memory T cells (Trm cells). A putative subset of tissue-resident long-lived stem cells is characterized by the ability to efflux Hoechst dyes and is referred to as side population (SP) cells. Here, we have characterized a subset of SP T cells (Tsp cells) that exhibit a quiescent (G0) phenotype in humans and mice. Human Trm cells in the gut and BM were enriched in Tsp cells that were predominantly in the G0 stage of the cell cycle. Moreover, in histone 2B-GFP mice, the 2B-GFP label was retained in Tsp cells, indicative of a slow-cycling phenotype. Human Tsp cells displayed a distinct gene-expression profile that was enriched for genes overexpressed in Trm cells. In mice, proteins encoded by Tsp signature genes, including nuclear receptor subfamily 4 group A member 1 (NR4A1) and ATP-binding cassette (ABC) transporters, influenced the function and differentiation of Trm cells. Responses to adoptive transfer of human Tsp cells into immune-deficient mice and plerixafor therapy suggested that human Tsp cell mobilization could be manipulated as a potential cellular therapy. These data identify a distinct subset of human T cells with a quiescent/slow-cycling phenotype, propensity for tissue enrichment, and potential to mobilize into circulation, which may be harnessed for adoptive cellular therapy.

Authors

Chandra Sekhar Boddupalli, Shiny Nair, Simon M. Gray, Heba N. Nowyhed, Rakesh Verma, Joanna A. Gibson, Clara Abraham, Deepak Narayan, Juan Vasquez, Catherine C. Hedrick, Richard A. Flavell, Kavita M. Dhodapkar, Susan M. Kaech, Madhav V. Dhodapkar

×

Figure 3

Cell-cycle analysis of Tsp cells.

Options: View larger image (or click on image) Download as PowerPoint
Cell-cycle analysis of Tsp cells.
(A) Hoechst–Pyronin Y cell-cycle analy...
(A) Hoechst–Pyronin Y cell-cycle analysis on Tsp and NSP fraction from human blood CD8+ T cells (top panel), IEL (middle panel), and skin CD8+ Trm cells (bottom panel). Result is representative of 3 independent experiments. (B) Bar graph represents combined data of 3 independent experiments. (C) Bar graph displays percentage of G0 and G1 fractions in CD8+ Tsp and NSP gated on Trm compartment from PP, IEL in mice at day 35 (p.i.) with LCMV-Arm. (D) Schematic diagram showing the protocol for measuring GFP label retention in H2B-GFP mice upon LCMV-Arm infection. (E) FACS analysis on memory CD8+ T cells from BM, spleen, liver, IEL, and PP after 5 weeks of chase; the same is documented in the bar graph (n = 4–5 mice). (F) FACS analysis of GFP label retention in SP and NSP CD8+ Trm compartment at 5 weeks chase in H2B GFP mice infected with LCMV-Arm. (G) Graph represents percentages of GFP+ cells in SP and NSP CD8+ Trm cells. *P < 0.05. Mouse experiments were repeated twice; graphs represent analysis from 1 experiment (n = 4 mice).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 4 news outlets
Posted by 5 X users
Referenced in 1 patents
83 readers on Mendeley
See more details