Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

cAMP-independent effects of GLP-1 on β cells
Jelena Kolic, Patrick E. MacDonald
Jelena Kolic, Patrick E. MacDonald
Published November 16, 2015
Citation Information: J Clin Invest. 2015;125(12):4327-4330. https://doi.org/10.1172/JCI85004.
View: Text | PDF
Commentary

cAMP-independent effects of GLP-1 on β cells

  • Text
  • PDF
Abstract

The ability of glucose to stimulate insulin secretion from the pancreatic islets of Langerhans is enhanced by the intestinal hormone glucagon-like peptide 1 (GLP-1), which is secreted from the gut in response to nutrient ingestion. This action, called the incretin effect, accounts for as much as half of the postprandial insulin response and is exploited therapeutically for diabetes treatment through the use of incretin mimetic drugs and inhibitors of dipeptidyl peptidase 4, which degrades GLP-1. Despite a prominent role for incretin mimetics in diabetes treatment, several key questions remain about GLP-1–induced insulin secretion. Most studies have examined the effects of GLP-1 at concentrations several orders of magnitude higher than those found in vivo; therefore, one might question the physiological (and perhaps even pharmacological) relevance of pathways identified in these studies and whether other important mechanisms might have been obscured. In this issue of the JCI, Shigeto and colleagues demonstrate that physiological GLP-1 does indeed amplify the insulin secretory response. Intriguingly, while much of this response is PKA dependent, as might be expected, the use of picomolar GLP-1 reveals a new and important mechanism that contributes to GLP-1–induced insulin secretion.

Authors

Jelena Kolic, Patrick E. MacDonald

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 468 323
PDF 93 44
Figure 59 1
Citation downloads 72 0
Totals 692 368
Total Views 1,060
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts