Experimentally, females show an improved ability to recover from ischemia-reperfusion injury (IRI) compared with males; however, this sex-dependent response is less established in humans. Here, we developed a series of murine renal ischemia and transplant models to investigate sex-specific effects on recovery after IRI. We found that IRI tolerance is profoundly increased in female mice compared with that observed in male mice and discovered an intermediate phenotype after neutering of either sex. Transplantation of adult kidneys from either sex into a recipient of the opposite sex followed by ischemia at a remote time resulted in ischemia recovery that reflected the sex of the recipient, not the donor, revealing that the host sex determines recovery. Likewise, renal IRI was exacerbated in female estrogen receptor α–KO mice, while female mice receiving supplemental estrogen before ischemia were protected. We examined data from the United Network for Organ Sharing (UNOS) to determine whether there is an association between sex and delayed graft function (DGF) in patients who received deceased donor renal transplants. A multivariable logistic regression analysis determined that there was a greater association with DGF in male recipients than in female recipients. Together, our results demonstrate that sex affects renal IRI tolerance in mice and humans and indicate that estrogen administration has potential as a therapeutic intervention to clinically improve ischemia tolerance.
David D. Aufhauser Jr., Zhonglin Wang, Douglas R. Murken, Tricia R. Bhatti, Yanfeng Wang, Guanghui Ge, Robert R. Redfield III, Peter L. Abt, Liqing Wang, Nikolaos Svoronos, Arwin Thomasson, Peter P. Reese, Wayne W. Hancock, Matthew H. Levine
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,005 | 195 |
154 | 70 | |
Figure | 336 | 3 |
Table | 150 | 0 |
Supplemental data | 66 | 0 |
Citation downloads | 86 | 0 |
Totals | 1,797 | 268 |
Total Views | 2,065 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.