Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
PI3-kinase mutation linked to insulin and growth factor resistance in vivo
Jonathon N. Winnay, … , C. Ronald Kahn, Pål R. Njølstad
Jonathon N. Winnay, … , C. Ronald Kahn, Pål R. Njølstad
Published March 14, 2016
Citation Information: J Clin Invest. 2016;126(4):1401-1412. https://doi.org/10.1172/JCI84005.
View: Text | PDF
Research Article Metabolism

PI3-kinase mutation linked to insulin and growth factor resistance in vivo

  • Text
  • PDF
Abstract

The phosphatidylinositol 3-kinase (PI3K) signaling pathway is central to the action of insulin and many growth factors. Heterozygous mutations in the gene encoding the p85α regulatory subunit of PI3K (PIK3R1) have been identified in patients with SHORT syndrome — a disorder characterized by short stature, partial lipodystrophy, and insulin resistance. Here, we evaluated whether SHORT syndrome–associated PIK3R1 mutations account for the pathophysiology that underlies the abnormalities by generating knockin mice that are heterozygous for the Pik3r1Arg649Trp mutation, which is homologous to the mutation found in the majority of affected individuals. Similar to the patients, mutant mice exhibited a reduction in body weight and length, partial lipodystrophy, and systemic insulin resistance. These derangements were associated with a reduced capacity of insulin and other growth factors to activate PI3K in liver, muscle, and fat; marked insulin resistance in liver and fat of mutation-harboring animals; and insulin resistance in vitro in cells derived from these mice. In addition, mutant mice displayed defective insulin secretion and GLP-1 action on islets in vivo and in vitro. These data demonstrate the ability of this heterozygous mutation to alter PI3K activity in vivo and the central role of PI3K in insulin/growth factor action, adipocyte function, and glucose metabolism.

Authors

Jonathon N. Winnay, Marie H. Solheim, Ercument Dirice, Masaji Sakaguchi, Hye-Lim Noh, Hee Joon Kang, Hirokazu Takahashi, Kishan K. Chudasama, Jason K. Kim, Anders Molven, C. Ronald Kahn, Pål R. Njølstad

×

Figure 4

p85WT/R649W mice exhibit islet hyperplasia and an insulin secretory defect.

Options: View larger image (or click on image) Download as PowerPoint
p85WT/R649W mice exhibit islet hyperplasia and an insulin secretory defe...
(A) Sections of whole pancreas stained with hematoxylin and eosin to visualize islets (original magnification, ×40). (B) Measurement of average islet area evaluated using ImageJ (n = 4). (C) Glucose-stimulated insulin secretion evaluated in 12-week-old male animals (n = 5). (D) Glucose-stimulated insulin secretion assessed in isolated islets from 10-week-old male mice in the absence and presence of GLP-1 (20 ng/dl) (n = 4). Results are expressed as mean ± SEM. *P < 0.05; **P < 0.01; #P < 0.0005, unpaired Student’s t test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts