Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22
Marianne R. Spalinger, … , Gerhard Rogler, Michael Scharl
Marianne R. Spalinger, … , Gerhard Rogler, Michael Scharl
Published April 4, 2016
Citation Information: J Clin Invest. 2016;126(5):1783-1800. https://doi.org/10.1172/JCI83669.
View: Text | PDF | Corrigendum | Corrigendum
Research Article Gastroenterology Immunology

NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22

  • Text
  • PDF
Abstract

Inflammasomes form as the result of the intracellular presence of danger-associated molecular patterns and mediate the release of active IL-1β, which influences a variety of inflammatory responses. Excessive inflammasome activation results in severe inflammatory conditions, but physiological IL-1β secretion is necessary for intestinal homeostasis. Here, we have described a mechanism of NLRP3 inflammasome regulation by tyrosine phosphorylation of NLRP3 at Tyr861. We demonstrated that protein tyrosine phosphatase non-receptor 22 (PTPN22), variants in which are associated with chronic inflammatory disorders, dephosphorylates NLRP3 upon inflammasome induction, allowing efficient NLRP3 activation and subsequent IL-1β release. In murine models, PTPN22 deficiency resulted in pronounced colitis, increased NLRP3 phosphorylation, but reduced levels of mature IL-1β. Conversely, patients with inflammatory bowel disease (IBD) that carried an autoimmunity-associated PTPN22 variant had increased IL-1β levels. Together, our results identify tyrosine phosphorylation as an important regulatory mechanism for NLRP3 that prevents aberrant inflammasome activation.

Authors

Marianne R. Spalinger, Stephanie Kasper, Claudia Gottier, Silvia Lang, Kirstin Atrott, Stephan R. Vavricka, Sylvie Scharl, Petrus M. Gutte, Markus G. Grütter, Hans-Dietmar Beer, Emmanuel Contassot, Andrew C. Chan, Xuezhi Dai, David J. Rawlings, Florian Mair, Burkhard Becher, Werner Falk, Michael Fried, Gerhard Rogler, Michael Scharl

×

Figure 12

The presence of PTPN22 gain-of-function variant results in increased IL-1β levels.

Options: View larger image (or click on image) Download as PowerPoint
The presence of PTPN22 gain-of-function variant results in increased IL-...
Intestinal biopsies and serum samples from CD patients homozygous for the major (G) variant or heterozygous or homozygous for the minor (A) PTPN22 variant in SNP rs2476601 were analyzed for (A) PTPN22, NLRP3, or IL1B mRNA levels (normalized to ACTB); and (B) serum levels of IL-1β. Monocyte-derived dendritic cells from healthy controls (HC), CD patients homozygous for the G variant (GG), or CD patients heterozygous for the A variant (GA) were (C) primed for 16 hours with upLPS before activation with MSU for 6 hours prior to analysis for caspase-1 and IL-1β by Western blot; or (D) left untreated or primed for 16 hours with upLPS before analysis of PTPN22, NLRP3, or IL1B mRNA expression. Data are shown as values relative to nontreated controls and normalized to ACTB. Each dot/lane represents an individual patient; *P < 0.05, **P < 0.001 (Mann-Whitney U test with Bonferroni correction). Numbers below the Western blot images show results of densitometry.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts