Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22
Marianne R. Spalinger, … , Gerhard Rogler, Michael Scharl
Marianne R. Spalinger, … , Gerhard Rogler, Michael Scharl
Published April 4, 2016
Citation Information: J Clin Invest. 2016;126(5):1783-1800. https://doi.org/10.1172/JCI83669.
View: Text | PDF | Corrigendum | Corrigendum
Research Article Gastroenterology Immunology Article has an altmetric score of 2

NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22

  • Text
  • PDF
Abstract

Inflammasomes form as the result of the intracellular presence of danger-associated molecular patterns and mediate the release of active IL-1β, which influences a variety of inflammatory responses. Excessive inflammasome activation results in severe inflammatory conditions, but physiological IL-1β secretion is necessary for intestinal homeostasis. Here, we have described a mechanism of NLRP3 inflammasome regulation by tyrosine phosphorylation of NLRP3 at Tyr861. We demonstrated that protein tyrosine phosphatase non-receptor 22 (PTPN22), variants in which are associated with chronic inflammatory disorders, dephosphorylates NLRP3 upon inflammasome induction, allowing efficient NLRP3 activation and subsequent IL-1β release. In murine models, PTPN22 deficiency resulted in pronounced colitis, increased NLRP3 phosphorylation, but reduced levels of mature IL-1β. Conversely, patients with inflammatory bowel disease (IBD) that carried an autoimmunity-associated PTPN22 variant had increased IL-1β levels. Together, our results identify tyrosine phosphorylation as an important regulatory mechanism for NLRP3 that prevents aberrant inflammasome activation.

Authors

Marianne R. Spalinger, Stephanie Kasper, Claudia Gottier, Silvia Lang, Kirstin Atrott, Stephan R. Vavricka, Sylvie Scharl, Petrus M. Gutte, Markus G. Grütter, Hans-Dietmar Beer, Emmanuel Contassot, Andrew C. Chan, Xuezhi Dai, David J. Rawlings, Florian Mair, Burkhard Becher, Werner Falk, Michael Fried, Gerhard Rogler, Michael Scharl

×

Figure 10

Reduced inflammasome activation in the lamina propria of Ptpn22–/– mice.

Options: View larger image (or click on image) Download as PowerPoint
Reduced inflammasome activation in the lamina propria of Ptpn22–/– mice....
Colitis was induced in WT and Ptpn22–/– littermates by administration of 2.5% DSS for 7 days. (A) Colon specimens were analyzed for caspase-1, IL-1β, and IL-18 by Western blot. (B) NLRP3 was immunoprecipitated from whole colon specimens and analyzed for tyrosine phosphorylation and interaction with PTPN22. (C) Intestinal epithelial cell (IEC) fraction and lamina propria (LP) were analyzed for caspase-1, IL-1β, and IL-18 by Western blot. (D) Lamina propria cells and epithelial cells were analyzed for Ptpn22 mRNA levels normalized to Actb. (E) NLRP3 was precipitated from lamina propria or epithelial cells and analyzed for pTyr and PTPN22. Numbers below the Western blot images show results of densitometry, and each lane represents one mouse.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
Highlighted by 1 platforms
158 readers on Mendeley
See more details