Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Altered function of insulin receptor substrate-1–deficient mouse islets and cultured β-cell lines
Rohit N. Kulkarni, … , Douglas Hanahan, C. Ronald Kahn
Rohit N. Kulkarni, … , Douglas Hanahan, C. Ronald Kahn
Published December 15, 1999
Citation Information: J Clin Invest. 1999;104(12):R69-R75. https://doi.org/10.1172/JCI8339.
View: Text | PDF
Rapid Publication Article has an altmetric score of 3

Altered function of insulin receptor substrate-1–deficient mouse islets and cultured β-cell lines

  • Text
  • PDF
Abstract

Insulin receptor substrate–1 (IRS-1) is pivotal in mediating the actions of insulin and growth factors in most tissues of the body, but its role in insulin-producing β islet cells is unclear. Freshly isolated islets from IRS-1 knockout mice and SV40-transformed IRS-1–deficient β-cell lines exhibit marked insulin secretory defects in response to glucose and arginine. Furthermore, insulin expression is reduced by about 2-fold in the IRS-1–null islets and β-cell lines, and this defect can be partially restored by transfecting the cells with IRS-1. These data provide evidence for an important role of IRS-1 in islet function and provide a novel functional link between the insulin signaling and insulin secretion pathways.

Authors

Rohit N. Kulkarni, Jonathon N. Winnay, Molly Daniels, Jens C. Brüning, Sarah N. Flier, Douglas Hanahan, C. Ronald Kahn

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 553 57
PDF 58 17
Figure 240 4
Citation downloads 51 0
Totals 902 78
Total Views 980
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
73 readers on Mendeley
See more details