The X chromosome–encoded histone demethylase UTX (also known as KDM6A) mediates removal of repressive trimethylation of histone H3 lysine 27 (H3K27me3) to establish transcriptionally permissive chromatin. Loss of UTX in female mice is embryonic lethal. Unexpectedly, male UTX-null mice escape embryonic lethality due to expression of UTY, a paralog that lacks H3K27 demethylase activity, suggesting an enzyme-independent role for UTX in development and thereby challenging the need for active H3K27 demethylation in vivo. However, the requirement for active H3K27 demethylation in stem cell–mediated tissue regeneration remains untested. Here, we employed an inducible mouse KO that specifically ablates
Hervé Faralli, Chaochen Wang, Kiran Nakka, Aissa Benyoucef, Soji Sebastian, Lenan Zhuang, Alphonse Chu, Carmen G. Palii, Chengyu Liu, Brendan Camellato, Marjorie Brand, Kai Ge, F. Jeffrey Dilworth
UTX demethylase activity is required for H3K27me3 removal on muscle differentiation gene.