Recent gene therapy progress has raised the possibility that vision loss caused by inherited retinal degeneration can be slowed or prevented. Unfortunately, patients are not usually diagnosed until enough degeneration has occurred that the deterioration in vision is noticeable. Therefore, effective gene therapy must halt degeneration to stabilize and preserve any remaining vision. Gene therapy methods currently in human clinical trials rely on subretinal or intravitreal injections of adeno-associated virus to deliver the therapeutic gene. To date, long-term results in patients treated with subretinal injections for Leber congenital amaurosis have been mixed. Proposed limitations include variability in the gene delivery method and a possible point of no return, at which treatment would be ineffective. In this issue of the
James B. Hurley, Jennifer R. Chao
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 232 | 40 |
128 | 20 | |
Figure | 62 | 2 |
Citation downloads | 51 | 0 |
Totals | 473 | 62 |
Total Views | 535 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.