Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer
Mick D. Edmonds, … , Thomas Andl, Christine M. Eischen
Mick D. Edmonds, … , Thomas Andl, Christine M. Eischen
Published December 14, 2015
Citation Information: J Clin Invest. 2016;126(1):349-364. https://doi.org/10.1172/JCI82720.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 18

MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer

  • Text
  • PDF
Abstract

MicroRNA (miR) are important regulators of gene expression, and aberrant miR expression has been linked to oncogenesis; however, little is understood about their contribution to lung tumorigenesis. Here, we determined that miR-31 is overexpressed in human lung adenocarcinoma and this overexpression independently correlates with decreased patient survival. We developed a transgenic mouse model that allows for lung-specific expression of miR-31 to test the oncogenic potential of miR-31 in the lung. Using this model, we observed that miR-31 induction results in lung hyperplasia, followed by adenoma formation and later adenocarcinoma development. Moreover, induced expression of miR-31 in mice cooperated with mutant KRAS to accelerate lung tumorigenesis. We determined that miR-31 regulates lung epithelial cell growth and identified 6 negative regulators of RAS/MAPK signaling as direct targets of miR-31. Our study distinguishes miR-31 as a driver of lung tumorigenesis that promotes mutant KRAS-mediated oncogenesis and reveals that miR-31 directly targets and reduces expression of negative regulators of RAS/MAPK signaling.

Authors

Mick D. Edmonds, Kelli L. Boyd, Tamara Moyo, Ramkrishna Mitra, Robert Duszynski, Maria Pia Arrate, Xi Chen, Zhongming Zhao, Timothy S. Blackwell, Thomas Andl, Christine M. Eischen

×

Figure 9

Reduced expression of negative regulators of the RAS/MAPK pathway with miR-31 overexpression in human lung adenocarcinoma.

Options: View larger image (or click on image) Download as PowerPoint
Reduced expression of negative regulators of the RAS/MAPK pathway with m...
(A) qRT-PCR analysis of the indicated miR-31 target mRNA in normal (N) human lung tissue and lung adenocarcinoma (Ad) (normal, n = 8; stage I, n = 7; stage II, n = 6; stage III, n = 4; stage IV, n = 6). Values were normalized to β-actin levels. *P < 0.05, t tests. (B) Regression analysis for miR-31 and the indicated target mRNA in human lung tissue evaluated in A. P values were determined by Spearman’s rank correlation. (C) Expression of the 6 miR-31 targets in the lung adenocarcinoma TCGA RNA sequencing data set. Data are presented as log2 transformation of gene expression. P values were calculated by Wilcoxon rank-sum test for normal versus tumor and Kruskal-Wallis rank-sum test for normal versus stages I–IV (normal n = 58; stage I n = 279; stage II n = 124; stage III n = 84; stage IV n = 27). In box-and-whisker plots, horizontal bars indicate the mean values, boxes indicate 25th to 75th percentiles, and whiskers indicate 10th and 90th percentiles. Data represented by bar graphs in A are mean values. Error bars represent SEM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Posted by 1 X users
On 1 Facebook pages
68 readers on Mendeley
See more details