Multidrug resistance protein 1 (MRP1) is a transporter protein that helps to protect normal cells and tumor cells against the influx of certain xenobiotics. We previously showed that Mrp1 protects against cytotoxic drugs at the testis-blood barrier, the oral epithelium, and the kidney urinary collecting duct tubules. Here, we generated Mrp1/Mdr1a/Mdr1b triple-knockout (TKO) mice, and used them together with Mdr1a/Mdr1b double-knockout (DKO) mice to study the contribution of Mrp1 to the tissue distribution and pharmacokinetics of etoposide. We observed increased toxicity in the TKO mice, which accumulated etoposide in brown adipose tissue, colon, salivary gland, heart, and the female urogenital system. Immunohistochemical staining revealed the presence of Mrp1 in the oviduct, uterus, salivary gland, and choroid plexus (CP) epithelium. To explore the transport function of Mrp1 in the CP epithelium, we used TKO and DKO mice cannulated for cerebrospinal fluid (CSF). We show here that the lack of Mrp1 protein causes etoposide levels to increase about 10-fold in the CSF after intravenous administration of the drug. Our results indicate that Mrp1 helps to limit tissue distribution of certain drugs and contributes to the blood-CSF drug-permeability barrier.
Jan Wijnholds, Elizabeth C.M. de Lange, George L. Scheffer, Dirk-Jan van den Berg, Carla A.A.M. Mol, Martin van der Valk, Alfred H. Schinkel, Rik J. Scheper, Douwe D. Breimer, Piet Borst
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 623 | 51 |
50 | 24 | |
Figure | 113 | 4 |
Table | 108 | 0 |
Citation downloads | 53 | 0 |
Totals | 947 | 79 |
Total Views | 1,026 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.