Sepsis is a systemic inflammatory response induced by an infection, leading to organ dysfunction and mortality. Historically, sepsis-induced organ dysfunction and lethality were attributed to the interplay between inflammatory and antiinflammatory responses. With advances in intensive care management and goal-directed interventions, early sepsis mortality has diminished, only to surge later after “recovery” from acute events, prompting a search for sepsis-induced alterations in immune function. Sepsis is well known to alter innate and adaptive immune responses for sustained periods after clinical “recovery,” with immunosuppression being a prominent example of such alterations. Recent studies have centered on immune-modulatory therapy. These efforts are focused on defining and reversing the persistent immune cell dysfunction that is associated with mortality long after the acute events of sepsis have resolved.
Matthew J. Delano, Peter A. Ward
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 2,438 | 1,027 |
300 | 279 | |
Figure | 287 | 30 |
Table | 73 | 0 |
Citation downloads | 71 | 0 |
Totals | 3,169 | 1,336 |
Total Views | 4,505 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.