Expression of Fas ligand (FasL) renders certain tissues immune privileged, but its expression in other tissues can result in severe neutrophil infiltration and tissue destruction. The consequences of enforced FasL expression in striated muscle is particularly controversial. To create a stable reproducible pattern of cardiomyocyte-specific FasL expression, transgenic (Tg) mice were generated that express murine FasL specifically in the heart, where it is not normally expressed. Tg animals are healthy and indistinguishable from nontransgenic littermates. FasL expression in the heart does result in mild leukocyte infiltration, but despite coexpression of Fas and FasL in Tg hearts, neither myocardial tissue apoptosis nor necrosis accompanies the leukocyte infiltration. Instead of tissue destruction, FasL Tg hearts develop mild interstitial fibrosis, functional changes, and cardiac hypertrophy, with corresponding molecular changes in gene expression. Induced expression of the cytokines TNF-α, IL-1β, IL-6, and TGF-β accompanies these proinflammatory changes. The histologic, functional, and molecular proinflammatory consequences of cardiac FasL expression are transgene-dose dependent. Thus, coexpression of Fas and FasL in the heart results in leukocyte infiltration and hypertrophy, but without the severe tissue destruction observed in other examples of FasL-directed proinflammation. The data suggest that the FasL expression level and other tissue-specific microenvironmental factors can modulate the proinflammatory consequences of FasL.
David P. Nelson, Elizabeth Setser, D. Greg Hall, Steven M. Schwartz, Timothy Hewitt, Raisa Klevitsky, Hanna Osinska, Don Bellgrau, Richard C. Duke, Jeffrey Robbins
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 174 | 24 |
80 | 17 | |
Figure | 284 | 18 |
Table | 106 | 0 |
Citation downloads | 45 | 0 |
Totals | 689 | 59 |
Total Views | 748 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.