Liver cancer stem cells (CSCs) have been identified and shown to have self-renewal and differentiation properties; however, the biology of these hepatic CSCs remains largely unknown. Here, we analyzed transcriptome gene expression profiles of liver CSCs and non-CSCs from hepatocellular carcinoma (HCC) cells lines and found that the transcription factor (TF) ZIC2 is highly expressed in liver CSCs. ZIC2 was required for the self-renewal maintenance of liver CSCs, as ZIC2 depletion reduced sphere formation and xenograft tumor growth in mice. We determined that ZIC2 acts upstream of the TF OCT4 and that ZIC2 recruits the nuclear remodeling factor (NURF) complex to the
Pingping Zhu, Yanying Wang, Lei He, Guanling Huang, Ying Du, Geng Zhang, Xinlong Yan, Pengyan Xia, Buqing Ye, Shuo Wang, Lu Hao, Jiayi Wu, Zusen Fan
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 965 | 104 |
84 | 84 | |
Figure | 354 | 15 |
Supplemental data | 34 | 3 |
Citation downloads | 55 | 0 |
Totals | 1,492 | 206 |
Total Views | 1,698 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.