We examined the effect on osteoclast formation of disrupting the prostaglandin G/H synthase genes PGHS-1 and-2. Prostaglandin E2 (PGE2) production was significantly reduced in marrow cultures from mice lacking PGHS-2 (PGHS-2–/–) compared with wild-type (PGHS-2+/+) cultures. Osteoclast formation, whether stimulated by 1,25-dihydroxyvitamin D3 (1,25-D) or by parathyroid hormone (PTH), was reduced by 60–70% in PGHS-2–/– cultures relative to wild-type cultures, an effect that could be reversed by providing exogenous PGE2. Cultures from heterozygous mice showed an intermediate response. PGHS inhibitors caused a similar drop in osteoclast formation in wild-type cultures. Co-culture experiments showed that supporting osteoblasts, rather than osteoclast precursors, accounted for the blunted response to 1,25-D and PTH. This lack of response appeared to result from reduced expression of RANK ligand (RANKL) in osteoblasts. We cultured spleen cells with exogenous RANKL and found that osteoclast formation was 50% lower in PGHS-2–/– than in wild-type cultures, apparently because the former cells expressed high levels of GM-CSF. Injection of PTH above the calvaria caused hypercalcemia in wild-type but not PGHS-2–/– mice. Histological examination of bone from 5-week-old PGHS-2–/– mice revealed no abnormalities. Mice lacking PGHS-1 were similar to wild-type mice in all of these parameters. These data suggest that PGHS-2 is not necessary for wild-type bone development but plays a critical role in bone resorption stimulated by 1,25-D and PTH.
Yosuke Okada, Joseph A. Lorenzo, Amanda M. Freeman, Masato Tomita, Scott G. Morham, Lawrence G. Raisz, Carol C. Pilbeam
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 491 | 68 |
126 | 28 | |
Figure | 385 | 20 |
Table | 78 | 0 |
Citation downloads | 63 | 0 |
Totals | 1,143 | 116 |
Total Views | 1,259 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.