Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway
Richard M. Lawn, … , Ashley M. Vaughan, John F. Oram
Richard M. Lawn, … , Ashley M. Vaughan, John F. Oram
Published October 15, 1999
Citation Information: J Clin Invest. 1999;104(8):R25-R31. https://doi.org/10.1172/JCI8119.
View: Text | PDF
Rapid Publication Article has an altmetric score of 9

The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway

  • Text
  • PDF
Abstract

The ABC1 transporter was identified as the defect in Tangier disease by a combined strategy of gene expression microarray analysis, genetic mapping, and biochemical studies. Patients with Tangier disease have a defect in cellular cholesterol removal, which results in near zero plasma levels of HDL and in massive tissue deposition of cholesteryl esters. Blocking the expression or activity of ABC1 reduces apolipoprotein-mediated lipid efflux from cultured cells, and increasing expression of ABC1 enhances it. ABC1 expression is induced by cholesterol loading and cAMP treatment and is reduced upon subsequent cholesterol removal by apolipoproteins. The protein is incorporated into the plasma membrane in proportion to its level of expression. Different mutations were detected in the ABC1 gene of 3 unrelated patients. Thus, ABC1 has the properties of a key protein in the cellular lipid removal pathway, as emphasized by the consequences of its defect in patients with Tangier disease.

Authors

Richard M. Lawn, David P. Wade, Michael R. Garvin, Xingbo Wang, Karen Schwartz, J. Gordon Porter, Jeffrey J. Seilhamer, Ashley M. Vaughan, John F. Oram

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Effects of DIDS and BSP on apo A-I–mediated cholesterol efflux. Choleste...
Effects of DIDS and BSP on apo A-I–mediated cholesterol efflux. Cholesterol-loaded and [3H]cholesterol–labeled normal fibroblasts were incubated for 6 hours with or without 5 μg/mL apo A-I and the indicated concentrations of DIDS or BSP. [3H]cholesterol efflux was measured as the percentage of total radiolabeled cholesterol appearing in the medium (y axis). Results are the mean ± SD (n = 3) of efflux in the presence of apo A-I after subtraction of values for apo A-I–free medium.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 17 patents
114 readers on Mendeley
1 readers on CiteULike
See more details