A transition from fetal hemoglobin (HbF) to adult hemoglobin (HbA) normally occurs within a few months after birth. Increased production of HbF after this period of infancy ameliorates clinical symptoms of the major disorders of adult β-hemoglobin: β-thalassemia and sickle cell disease. The transcription factor BCL11A silences HbF and has been an attractive therapeutic target for increasing HbF levels; however, it is not clear to what extent BCL11A inhibits HbF production or mediates other developmental functions in humans. Here, we identified and characterized 3 patients with rare microdeletions of 2p15-p16.1 who presented with an autism spectrum disorder and developmental delay. Moreover, these patients all exhibited substantial persistence of HbF but otherwise retained apparently normal hematologic and immunologic function. Of the genes within 2p15-p16.1, only
Anindita Basak, Miroslava Hancarova, Jacob C. Ulirsch, Tugce B. Balci, Marie Trkova, Michal Pelisek, Marketa Vlckova, Katerina Muzikova, Jaroslav Cermak, Jan Trka, David A. Dyment, Stuart H. Orkin, Mark J. Daly, Zdenek Sedlacek, Vijay G. Sankaran
Involvement of