Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2–dependent C-terminal phosphorylation of sortilin. In a murine model,
Claudia Goettsch, Joshua D. Hutcheson, Masanori Aikawa, Hiroshi Iwata, Tan Pham, Anders Nykjaer, Mads Kjolby, Maximillian Rogers, Thomas Michel, Manabu Shibasaki, Sumihiko Hagita, Rafael Kramann, Daniel J. Rader, Peter Libby, Sasha A. Singh, Elena Aikawa
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,083 | 196 |
129 | 84 | |
Figure | 443 | 11 |
Supplemental data | 78 | 10 |
Citation downloads | 82 | 0 |
Totals | 1,815 | 301 |
Total Views | 2,116 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.