Ischemic heart disease is the leading cause of heart failure. Both clinical trials and experimental animal studies demonstrate that chronic hypoxia can induce contractile dysfunction even before substantial ventricular damage, implicating a direct role of oxygen in the regulation of cardiac contractile function. Prolyl hydroxylase domain (PHD) proteins are well recognized as oxygen sensors and mediate a wide variety of cellular events by hydroxylating a growing list of protein substrates. Both PHD2 and PHD3 are highly expressed in the heart, yet their functional roles in modulating contractile function remain incompletely understood. Here, we report that combined deletion of
Liang Xie, Xinchun Pi, W.H. Davin Townley-Tilson, Na Li, Xander H.T. Wehrens, Mark L. Entman, George E. Taffet, Ashutosh Mishra, Junmin Peng, Jonathan C. Schisler, Gerhard Meissner, Cam Patterson
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 580 | 45 |
75 | 21 | |
Figure | 338 | 4 |
Supplemental data | 42 | 2 |
Citation downloads | 62 | 0 |
Totals | 1,097 | 72 |
Total Views | 1,169 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.