Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Chitinase 3–like–1 and its receptors in Hermansky-Pudlak syndrome–associated lung disease
Yang Zhou, … , Chun Geun Lee, Jack A. Elias
Yang Zhou, … , Chun Geun Lee, Jack A. Elias
Published June 29, 2015
Citation Information: J Clin Invest. 2015;125(8):3178-3192. https://doi.org/10.1172/JCI79792.
View: Text | PDF
Research Article Pulmonology

Chitinase 3–like–1 and its receptors in Hermansky-Pudlak syndrome–associated lung disease

  • Text
  • PDF
Abstract

Hermansky-Pudlak syndrome (HPS) comprises a group of inherited disorders caused by mutations that alter the function of lysosome-related organelles. Pulmonary fibrosis is the major cause of morbidity and mortality in patients with subtypes HPS-1 and HPS-4, which both result from defects in biogenesis of lysosome-related organelle complex 3 (BLOC-3). The prototypic chitinase-like protein chitinase 3–like–1 (CHI3L1) plays a protective role in the lung by ameliorating cell death and stimulating fibroproliferative repair. Here, we demonstrated that circulating CHI3L1 levels are higher in HPS patients with pulmonary fibrosis compared with those who remain fibrosis free, and that these levels associate with disease severity. Using murine HPS models, we also determined that these animals have a defect in the ability of CHI3L1 to inhibit epithelial apoptosis but exhibit exaggerated CHI3L1-driven fibroproliferation, which together promote HPS fibrosis. These divergent responses resulted from differences in the trafficking and effector functions of two CHI3L1 receptors. Specifically, the enhanced sensitivity to apoptosis was due to abnormal localization of IL-13Rα2 as a consequence of dysfunctional BLOC-3–dependent membrane trafficking. In contrast, the fibrosis was due to interactions between CHI3L1 and the receptor CRTH2, which trafficked normally in BLOC-3 mutant HPS. These data demonstrate that CHI3L1-dependent pathways exacerbate pulmonary fibrosis and suggest CHI3L1 as a potential biomarker for pulmonary fibrosis progression and severity in HPS.

Authors

Yang Zhou, Chuan Hua He, Erica L. Herzog, Xueyan Peng, Chang-Min Lee, Tung H. Nguyen, Mridu Gulati, Bernadette R. Gochuico, William A. Gahl, Martin L. Slade, Chun Geun Lee, Jack A. Elias

×

Figure 3

IL-13Rα2 membrane trafficking is impaired in pale ear mice.

Options: View larger image (or click on image) Download as PowerPoint
IL-13Rα2 membrane trafficking is impaired in pale ear mice.
(A–D) WT and...
(A–D) WT and pale ear mice were treated with saline or bleomycin, and lungs were harvested on day 7. IL-13Rα2 was labeled with red fluorescence (Alexa Fluor 594). Pan-cadherin was labeled with green fluorescence (Alexa Fluor 488) to indicate plasma membrane. Localization of IL-13Rα2 on plasma membrane is indicated by arrows. Scale bars: 10 μm. (E–H) WT and pale ear mice were treated with saline or bleomycin, and lungs were harvested on day 7. IL-13Rα2 was labeled with red fluorescence (Alexa Fluor 594). EEA1 was labeled with green fluorescence (Alexa Fluor 488) to indicate endosomal compartment. Nuclei are stained with TO-PRO (Life Technologies) (blue). Each experiment was undertaken at least three times. Scale bars: 10 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts