Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of progressive renal function decline and affects millions of people. In a recent study, 30% of SRNS cases evaluated were the result of monogenic mutations in 1 of 27 different genes. Here, using homozygosity mapping and whole-exome sequencing, we identified recessive mutations in
Heon Yung Gee, Fujian Zhang, Shazia Ashraf, Stefan Kohl, Carolin E. Sadowski, Virginia Vega-Warner, Weibin Zhou, Svjetlana Lovric, Humphrey Fang, Margaret Nettleton, Jun-yi Zhu, Julia Hoefele, Lutz T. Weber, Ludmila Podracka, Andrej Boor, Henry Fehrenbach, Jeffrey W. Innis, Joseph Washburn, Shawn Levy, Richard P. Lifton, Edgar A. Otto, Zhe Han, Friedhelm Hildebrandt
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,229 | 154 |
132 | 72 | |
Figure | 356 | 4 |
Table | 56 | 0 |
Supplemental data | 52 | 5 |
Citation downloads | 73 | 0 |
Totals | 1,898 | 235 |
Total Views | 2,133 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.