Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Stable mixed chimerism and tolerance using a nonmyeloablative preparative regimen in a large-animal model
Christene A. Huang, … , David M. Neville Jr., David H. Sachs
Christene A. Huang, … , David M. Neville Jr., David H. Sachs
Published January 15, 2000
Citation Information: J Clin Invest. 2000;105(2):173-181. https://doi.org/10.1172/JCI7913.
View: Text | PDF
Article Article has an altmetric score of 6

Stable mixed chimerism and tolerance using a nonmyeloablative preparative regimen in a large-animal model

  • Text
  • PDF
Abstract

Bone marrow transplantation (BMT) has considerable potential for the treatment of malignancies, hemoglobinopathies, and autoimmune diseases, as well as the induction of transplantation allograft tolerance. Toxicities associated with standard preparative regimens for bone marrow transplantation, however, make this approach unacceptable for all but the most severe of these clinical situations. Here, we demonstrate that stable mixed hematopoietic cell chimerism and donor-specific tolerance can be established in miniature swine, using a relatively mild, non-myeloablative preparative regimen. We conditioned recipient swine with whole-body and thymic irradiation, and we depleted their T-cells by CD3 immunotoxin-treatment. Infusion of either bone marrow cells or cytokine-mobilized peripheral blood stem cells from leukocyte antigen-matched animals resulted in stable mixed chimerism, as detected by flow cytometry in the peripheral blood, thymus, and bone marrow, without any clinical evidence of graft-versus-host disease (GvHD). Long-term acceptance of donor skin and consistent rejection of third-party skin indicated that the recipients had developed donor-specific tolerance.

Authors

Christene A. Huang, Yasushi Fuchimoto, Rachel Scheier-Dolberg, Michael C. Murphy, David M. Neville Jr., David H. Sachs

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Schematic representation of nonmyeloablative preparative regimen used to...
Schematic representation of nonmyeloablative preparative regimen used to establish hematopoietic mixed chimerism in miniature swine.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
32 readers on Mendeley
See more details