Coronary arteries (CAs) stem from the aorta at 2 highly stereotyped locations, deviations from which can cause myocardial ischemia and death. CA stems form during embryogenesis when peritruncal blood vessels encircle the cardiac outflow tract and invade the aorta, but the underlying patterning mechanisms are poorly understood. Here, using murine models, we demonstrated that VEGF-C–deficient hearts have severely hypoplastic peritruncal vessels, resulting in delayed and abnormally positioned CA stems. We observed that VEGF-C is widely expressed in the outflow tract, while cardiomyocytes develop specifically within the aorta at stem sites where they surround maturing CAs in both mouse and human hearts. Mice heterozygous for islet 1 (
Heidi I. Chen, Aruna Poduri, Harri Numi, Riikka Kivela, Pipsa Saharinen, Andrew S. McKay, Brian Raftrey, Jared Churko, Xueying Tian, Bin Zhou, Joseph C. Wu, Kari Alitalo, Kristy Red-Horse
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 806 | 87 |
98 | 57 | |
Figure | 406 | 4 |
Supplemental data | 43 | 2 |
Citation downloads | 66 | 0 |
Totals | 1,419 | 150 |
Total Views | 1,569 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.