Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
VEGF-C and aortic cardiomyocytes guide coronary artery stem development
Heidi I. Chen, … , Kari Alitalo, Kristy Red-Horse
Heidi I. Chen, … , Kari Alitalo, Kristy Red-Horse
Published October 1, 2014
Citation Information: J Clin Invest. 2014;124(11):4899-4914. https://doi.org/10.1172/JCI77483.
View: Text | PDF
Research Article Vascular biology

VEGF-C and aortic cardiomyocytes guide coronary artery stem development

  • Text
  • PDF
Abstract

Coronary arteries (CAs) stem from the aorta at 2 highly stereotyped locations, deviations from which can cause myocardial ischemia and death. CA stems form during embryogenesis when peritruncal blood vessels encircle the cardiac outflow tract and invade the aorta, but the underlying patterning mechanisms are poorly understood. Here, using murine models, we demonstrated that VEGF-C–deficient hearts have severely hypoplastic peritruncal vessels, resulting in delayed and abnormally positioned CA stems. We observed that VEGF-C is widely expressed in the outflow tract, while cardiomyocytes develop specifically within the aorta at stem sites where they surround maturing CAs in both mouse and human hearts. Mice heterozygous for islet 1 (Isl1) exhibited decreased aortic cardiomyocytes and abnormally low CA stems. In hearts with outflow tract rotation defects, misplaced stems were associated with shifted aortic cardiomyocytes, and myocardium induced ectopic connections with the pulmonary artery in culture. These data support a model in which CA stem development first requires VEGF-C to stimulate vessel growth around the outflow tract. Then, aortic cardiomyocytes facilitate interactions between peritruncal vessels and the aorta. Derangement of either step can lead to mispatterned CA stems. Studying this niche for cardiomyocyte development, and its relationship with CAs, has the potential to identify methods for stimulating vascular regrowth as a treatment for cardiovascular disease.

Authors

Heidi I. Chen, Aruna Poduri, Harri Numi, Riikka Kivela, Pipsa Saharinen, Andrew S. McKay, Brian Raftrey, Jared Churko, Xueying Tian, Bin Zhou, Joseph C. Wu, Kari Alitalo, Kristy Red-Horse

×

Figure 4

Aorta-specific cardiomyocyte development precedes CA stem formation.

Options: View larger image (or click on image) Download as PowerPoint
Aorta-specific cardiomyocyte development precedes CA stem formation.
(A)...
(A) Confocal image of the right lateral side of an E13.5 heart showing that cardiomyocytes (red, arrowheads) develop on the aorta distal to the valves but are absent in the analogous region of the pulmonary artery. The right coronary sinus (rcs) and noncoronary sinus (ncs) regions are indicated by square and curly brackets, respectively. (B) Quantification of cardiomyocytes within the aorta and pulmonary artery. (C) Quantification of cardiomyocytes among the different regions of the aorta. (D) Right and left lateral views of the aorta showing concentration of cardiomyocytes specifically around the right and left coronary sinuses (lcs) at the maturing stem sites (arrowheads). (E) Cardiomyocytes (arrowheads) are present in the aortic wall around the right and left coronary sinuses at E11.5 before stem formation. Aortic and pulmonary valve sinuses are schematized with dotted lines. (F) Cardiomyocytes directly contact the aortic endothelium (arrowhead) where aortic sprouts (sp) form — (G) but not the pulmonary artery (arrow), which never sprouts — as quantified in H. High-magnification views of the boxed regions are shown. (I) Developing CA stems (arrowhead) are closely associated with aortic cardiomyocytes. (J) Aortic cardiomyocytes are no longer present in adult hearts. (K) Developing human CA stems (arrowheads, dotted lines) are associated with aortic cardiomyocytes. OFT, outflow tract. All data represent mean ± SD. Each dot represents a value obtained from one sample. ****P < 0.0001; ***P = 0.0001 to 0.001; **P = 0.001 to 0.01. Scale bars: 100 μm (A, D, E, left panel in F, right panel in G, J, and K); 25 μm (right panel in F and left panel in G); 50 μm (I).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts