Postischemic injury in recipients of 3-7-d-old renal allografts was classified into sustained (n = 19) or recovering (n = 20) acute renal failure (ARF) according to the prevailing inulin clearance. Recipients of optimally functioning, long-standing allografts and living donors undergoing nephrectomy served as functional (n = 14) and structural controls (n = 10), respectively. Marked elevation above control of fractional clearance of dextrans of graded size was consistent with transtubular backleak of 57% of filtrate (inulin) in sustained ARF. No backleak was detected in recovering ARF. To explore a structural basis for backleak, allograft biopsies were taken intraoperatively, 1 h after reperfusion in all recipients, and again on day 7 after transplant in a subset (n = 10). Electron microscopy revealed disruption of both apical and basolateral membranes of proximal tubule cells in both sustained and recovering ARF, but cell exfoliation and tubule basement membrane denudation were negligible. Histochemical analysis of membrane-associated adhesion complexes confirmed an abnormality of proximal but not distal tubule cells, marked in sustained ARF but not in recovering ARF. Staining for the zonula occludens complex (ZO-1) and adherens complex (alpha, beta, and gamma catenins) revealed diminished intensity and redistribution of each cytoskeletal protein from the apico-lateral membrane boundary. We conclude that impaired integrity of tight junctions and cell-cell adhesion in the proximal tubule provides a paracellular pathway through which filtrate leaks back in sustained allograft ARF.
O Kwon, W J Nelson, R Sibley, P Huie, J D Scandling, D Dafoe, E Alfrey, B D Myers
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 141 | 40 |
55 | 23 | |
Citation downloads | 58 | 0 |
Totals | 254 | 63 |
Total Views | 317 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.