Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Radiation and ATM inhibition: the heart of the matter
Ester M. Hammond, Ruth J. Muschel
Ester M. Hammond, Ruth J. Muschel
Published July 18, 2014
Citation Information: J Clin Invest. 2014;124(8):3289-3291. https://doi.org/10.1172/JCI77195.
View: Text | PDF
Commentary

Radiation and ATM inhibition: the heart of the matter

  • Text
  • PDF
Abstract

Numerous in vitro studies have shown that human cell lines lacking functional ATM are extremely radiosensitive. In this issue, Moding et al. demonstrate using a murine model of sarcoma that deletion of the Atm gene has much less of a radiosensitizing effect on normal cardiac endothelia than on rapidly proliferating tumor endothelia. This work confounds our assumptions about the generality of the role of ATM in radiation sensitivity and the potential use of ATM inhibitors as radiosensitizers.

Authors

Ester M. Hammond, Ruth J. Muschel

×

Figure 1

Generation of genetically engineered mice with sarcoma driven by deletion of p53 and expression of mutant Kras in mice with endothelial cell–specific ATM loss.

Options: View larger image (or click on image) Download as PowerPoint
Generation of genetically engineered mice with sarcoma driven by deletio...
(A) Moding et al. developed this model (14) using genetically engineered mice in which Atm was selectively deleted in the vast majority of endothelial cells due to transgenic expression of the recombinase Cre from the endothelial-selective VE-cadherin promoter. (B) Subsequently, a sarcoma was induced in these mice. In addition to the alterations of the Atm gene, these mice had p53 flanked by Frt sequences that can be cleaved and deleted by a different recombinase, FlpO. The mice further contained a mutant Kras that is inhibited in its expression by stop sequences that also can be cleaved and deleted by FlpO. Injection of an adenovirus expressing FlpO resulted in expression of oncogenic Kras and loss of p53 and led to sarcoma formation at the site of the injection. Notably, the tumor itself expressed wild-type ATM. (C) Finally, both the tumor and the heart were irradiated, allowing for comparison of tumor endothelial and cardiac endothelial response to radiation.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts