Multiple myeloma (MM) is an age-dependent hematological malignancy. Evaluation of immune interactions that drive MM relies on in vitro experiments that do not reflect the complex cellular stroma involved in MM pathogenesis. Here we used Vk*MYC transgenic mice, which spontaneously develop MM, and demonstrated that the immune system plays a critical role in the control of MM progression and the response to treatment. We monitored Vk*MYC mice that had been crossed with
Camille Guillerey, Lucas Ferrari de Andrade, Slavica Vuckovic, Kim Miles, Shin Foong Ngiow, Michelle C.R. Yong, Michele W.L. Teng, Marco Colonna, David S. Ritchie, Martha Chesi, P. Leif Bergsagel, Geoffrey R. Hill, Mark J. Smyth, Ludovic Martinet
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 916 | 222 |
271 | 76 | |
Figure | 456 | 18 |
Supplemental data | 44 | 7 |
Citation downloads | 65 | 0 |
Totals | 1,752 | 323 |
Total Views | 2,075 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.