Glaucoma is a leading cause of blindness, afflicting more than 60 million people worldwide. Increased intraocular pressure (IOP) due to impaired aqueous humor drainage is a major risk factor for the development of glaucoma. Here, we demonstrated that genetic disruption of the angiopoietin/TIE2 (ANGPT/TIE2) signaling pathway results in high IOP, buphthalmos, and classic features of glaucoma, including retinal ganglion degeneration and vision loss. Eyes from mice with induced deletion of
Benjamin R. Thomson, Stefan Heinen, Marie Jeansson, Asish K. Ghosh, Anees Fatima, Hoon-Ki Sung, Tuncer Onay, Hui Chen, Shinji Yamaguchi, Aris N. Economides, Ann Flenniken, Nicholas W. Gale, Young-Kwon Hong, Amani Fawzi, Xiaorong Liu, Tsutomu Kume, Susan E. Quaggin
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 831 | 220 |
118 | 78 | |
Figure | 262 | 3 |
Supplemental data | 61 | 9 |
Citation downloads | 74 | 0 |
Totals | 1,346 | 310 |
Total Views | 1,656 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.