Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The cystine/glutamate antiporter: when too much of a good thing goes bad
Kathryn J. Reissner
Kathryn J. Reissner
Published July 18, 2014
Citation Information: J Clin Invest. 2014;124(8):3279-3281. https://doi.org/10.1172/JCI76627.
View: Text | PDF
Commentary

The cystine/glutamate antiporter: when too much of a good thing goes bad

  • Text
  • PDF
Abstract

Glutamate excitotoxicity represents a major cellular component of ischemic brain injury. In this issue of the JCI, Soria and colleagues reveal that the cystine/glutamate exchanger is an important source of excitotoxic glutamate in response to ischemia induced by oxygen and glucose deprivation. As the exchanger is a primary determinant of both extracellular glutamate and intracellular glutathione, the findings from this study not only provide important insight into the mechanisms of brain ischemia but also demonstrate the complexity of the yin and yang of glutamate homeostasis and cellular redox balance.

Authors

Kathryn J. Reissner

×

Figure 1

Systematic analysis of the source of excitotoxic glutamate during ischemic brain injury.

Options: View larger image (or click on image) Download as PowerPoint
Systematic analysis of the source of excitotoxic glutamate during ischem...
Excitotoxic glutamate (brown circles) released during oxygen and glucose deprivation in culture could potentially derive from reverse transport from high-affinity glutamate transporters (i, yellow), vesicular glutamate release (ii), or the cystine/glutamate exchanger (iii, green). Exchange of glutamate release for cystine uptake by the exchanger is indicated with bidirectional arrows. Soria and colleagues have demonstrated that glutamate released from the cystine/glutamate exchanger activates extrasynaptic NR2B–containing receptors (iii, purple), as opposed to synaptic NR2A–containing receptors (blue).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts