Canonical WNT signaling is required for proper vascularization of the CNS during embryonic development. Here, we used mice with targeted mutations in genes encoding canonical WNT pathway members to evaluate the exact contribution of these components in CNS vascular development and in specification of the blood-brain barrier (BBB) and blood-retina barrier (BRB). We determined that vasculature in various CNS regions is differentially sensitive to perturbations in canonical WNT signaling. The closely related WNT signaling coreceptors LDL receptor–related protein 5 (LRP5) and LRP6 had redundant functions in brain vascular development and barrier maintenance; however, loss of LRP5 alone dramatically altered development of the retinal vasculature. The BBB in the cerebellum and pons/interpeduncular nuclei was highly sensitive to decrements in canonical WNT signaling, and WNT signaling was required to maintain plasticity of barrier properties in mature CNS vasculature. Brain and retinal vascular defects resulting from ablation of Norrin/Frizzled4 signaling were ameliorated by stabilizing β-catenin, while inhibition of β-catenin–dependent transcription recapitulated the vascular development and barrier defects associated with loss of receptor, coreceptor, or ligand, indicating that Norrin/Frizzled4 signaling acts predominantly through β-catenin–dependent transcriptional regulation. Together, these data strongly support a model in which identical or nearly identical canonical WNT signaling mechanisms mediate neural tube and retinal vascularization and maintain the BBB and BRB.
Yulian Zhou, Yanshu Wang, Max Tischfield, John Williams, Philip M. Smallwood, Amir Rattner, Makoto M. Taketo, Jeremy Nathans
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,482 | 285 |
231 | 100 | |
Figure | 860 | 18 |
Table | 63 | 0 |
Supplemental data | 274 | 24 |
Citation downloads | 101 | 0 |
Totals | 3,011 | 427 |
Total Views | 3,438 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.