Recent attempts to develop an HIV-1 vaccine indicate that viral replication can be limited by the induction of viral-specific T cell responses; however, recent trials of vaccine candidates designed to target CD8+ T cell responses were unsuccessful. In this issue, Sui and colleagues used a nonhuman primate model to investigate the effect of various vaccine adjuvants on the efficacy of SIV immunization. Unexpectedly, Sui et al. discovered that animals given adjuvant alone in the absence of SIV antigen exhibited a pronounced decrease in viral load following viral challenge. Vaccination with viral antigens combined with adjuvant correlated with the expansion of a population of cells with similarity to myeloid-derived suppressor cells (MDSCs) that may have suppressed vaccine-elicited T cell responses. Together, these results suggest that both innate and adaptive vaccine-elicited immune responses will need to be considered in future HIV-1 vaccine development.
Sallie R. Permar, Herman F. Staats
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 241 | 13 |
72 | 16 | |
Citation downloads | 60 | 0 |
Totals | 373 | 29 |
Total Views | 402 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.