Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Longistatin in tick saliva blocks advanced glycation end-product receptor activation
Anisuzzaman, … , Kozo Fujisaki, Naotoshi Tsuji
Anisuzzaman, … , Kozo Fujisaki, Naotoshi Tsuji
Published September 2, 2014
Citation Information: J Clin Invest. 2014;124(10):4429-4444. https://doi.org/10.1172/JCI74917.
View: Text | PDF
Research Article Infectious disease Article has an altmetric score of 1

Longistatin in tick saliva blocks advanced glycation end-product receptor activation

  • Text
  • PDF
Abstract

Ticks are notorious hematophagous ectoparasites and vectors of many deadly pathogens. As an effective vector, ticks must break the strong barrier provided by the skin of their host during feeding, and their saliva contains a complex mixture of bioactive molecules that paralyze host defenses. The receptor for advanced glycation end products (RAGE) mediates immune cell activation at inflammatory sites and is constitutively and highly expressed in skin. Here, we demonstrate that longistatin secreted with saliva of the tick Haemaphysalis longicornis binds RAGE and modulates the host immune response. Similar to other RAGE ligands, longistatin specifically bound the RAGE V domain, and stimulated cultured HUVECs adhered to a longistatin-coated surface; this binding was dramatically inhibited by soluble RAGE or RAGE siRNA. Treatment of HUVECs with longistatin prior to stimulation substantially attenuated cellular oxidative stress and prevented NF-κB translocation, thereby reducing adhesion molecule and cytokine production. Recombinant longistatin inhibited RAGE-mediated migration of mouse peritoneal resident cells (mPRCs) and ameliorated inflammation in mouse footpad edema and pneumonia models. Importantly, tick bite upregulated RAGE ligands in skin, and endogenous longistatin attenuated RAGE-mediated inflammation during tick feeding. Our results suggest that longistatin is a RAGE antagonist that suppresses tick bite–associated inflammation, allowing successful blood-meal acquisition from hosts.

Authors

Anisuzzaman, Takeshi Hatta, Takeharu Miyoshi, Makoto Matsubayashi, M. Khyrul Islam, M. Abdul Alim, M. Abu Anas, M. Mehedi Hasan, Yasunobu Matsumoto, Yasuhiko Yamamoto, Hiroshi Yamamoto, Kozo Fujisaki, Naotoshi Tsuji

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 571 74
PDF 86 51
Figure 493 3
Supplemental data 44 2
Citation downloads 65 0
Totals 1,259 130
Total Views 1,389
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
46 readers on Mendeley
See more details