Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma
Yulong Chen, … , Mitsuo Yamauchi, Jonathan M. Kurie
Yulong Chen, … , Mitsuo Yamauchi, Jonathan M. Kurie
Published February 9, 2015
Citation Information: J Clin Invest. 2015;125(3):1147-1162. https://doi.org/10.1172/JCI74725.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 76

Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

  • Text
  • PDF
Abstract

Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma.

Authors

Yulong Chen, Masahiko Terajima, Yanan Yang, Li Sun, Young-Ho Ahn, Daniela Pankova, Daniel S. Puperi, Takeshi Watanabe, Min P. Kim, Shanda H. Blackmon, Jaime Rodriguez, Hui Liu, Carmen Behrens, Ignacio I. Wistuba, Rosalba Minelli, Kenneth L. Scott, Johannah Sanchez-Adams, Farshid Guilak, Debananda Pati, Nishan Thilaganathan, Alan R. Burns, Chad J. Creighton, Elisabeth D. Martinez, Tomasz Zal, K. Jane Grande-Allen, Mitsuo Yamauchi, Jonathan M. Kurie

×

Figure 5

LH2 expression is upregulated by STAT3 and paracrine signals from CAFs.

Options: View larger image (or click on image) Download as PowerPoint
LH2 expression is upregulated by STAT3 and paracrine signals from CAFs.
...
(A) HIF-1α levels in cell lysates determined by ELISA. Data from a single experiment expressed as mean ± SD of triplicate samples. (B and C) Immunoblot analysis of KC (B) and human (C) lung cancer cell lines. Actin was used as loading control. (D) Correlation of LH2 mRNA levels in Supplemental Figure 11A with pSTAT3 (Y705) levels determined densitometrically from C. P and r2 values, linear regression analysis. (E) Immunoblotting (gels) and Q-PCR analysis (bar graphs) of data from a single experiment in which human lung cancer cells were untreated (0) or treated with a Janus kinase inhibitor, P6, for 48 hours. Normalized Q-PCR values are expressed as mean of triplicate samples. (F) Immunoblotting (gels) and Q-PCR analysis (bar graph) of a single experiment in which A549 cells were stably transfected with 1 of 2 STAT3 shRNAs (SHF and SHG) or control shRNA (FF2). Q-PCR results (mean values of triplicate samples) are expressed relative to control transfectants, which were set at 100%. Actin was used as a loading control for immunoblot. (G) Immunoblotting (gels) and Q-PCR analysis (bar graphs) of A549 cells were monocultured (–) or co-cultured with human cancer-associated fibroblasts (hCAF) (+) for 24 hours in Boyden chambers. Q-PCR results are expressed as mean values of triplicate samples. Actin was used as a loading control for immunoblot. P values, 2-tailed Student’s t test unless otherwise specified.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 10 news outlets
Posted by 9 X users
On 1 Facebook pages
137 readers on Mendeley
See more details