Synaptic plasticity is the ability of synapses to modulate the strength of neuronal connections; however, the molecular factors that regulate this feature are incompletely understood. Here, we demonstrated that mice lacking brain-specific angiogenesis inhibitor 1 (BAI1) have severe deficits in hippocampus-dependent spatial learning and memory that are accompanied by enhanced long-term potentiation (LTP), impaired long-term depression (LTD), and a thinning of the postsynaptic density (PSD) at hippocampal synapses. We showed that compared with WT animals, mice lacking
Dan Zhu, Chenchen Li, Andrew M. Swanson, Rosa M. Villalba, Jidong Guo, Zhaobin Zhang, Shannon Matheny, Tatsuro Murakami, Jason R. Stephenson, Sarah Daniel, Masaki Fukata, Randy A. Hall, Jeffrey J. Olson, Gretchen N. Neigh, Yoland Smith, Donald G. Rainnie, Erwin G. Van Meir
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 691 | 135 |
133 | 49 | |
Figure | 442 | 23 |
Supplemental data | 41 | 1 |
Citation downloads | 70 | 0 |
Totals | 1,377 | 208 |
Total Views | 1,585 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.