Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Fanning the flames to regenerate the heart
Paul R. Riley
Paul R. Riley
Published February 24, 2014
Citation Information: J Clin Invest. 2014;124(3):961-964. https://doi.org/10.1172/JCI74418.
View: Text | PDF
Commentary

Fanning the flames to regenerate the heart

  • Text
  • PDF
Abstract

Damage to the adult mammalian heart is irreversible, and lost cells are not replaced through regeneration. In neonatal mice, prior to P7, heart tissue can be regenerated after injury; however, the factors that facilitate cardiac regeneration in the neonatal heart are not known. In this issue of the JCI, Aurora and colleagues evaluated the immune response following myocardial infarction in P1 mice compared with that in P14 mice, which have lost their regenerative capacity, and identified a population of macrophages as mediators of cardiac repair. Further understanding of the immune modulators that promote the regenerative properties of this macrophage subset could potentially be exploited to recapitulate regenerative function in the adult heart.

Authors

Paul R. Riley

×

Figure 1

Macrophage depletion prevents regeneration of the neonatal mouse heart.

Options: View larger image (or click on image) Download as PowerPoint
Macrophage depletion prevents regeneration of the neonatal mouse heart.
...
(A) Neonatal mouse pups are intravenously injected with clodronate-loaded liposomes (yellow), which are phagocytosed by macrophages (red). Clodronate uptake results in macrophage apoptosis and subsequent depletion (blue). Loss of macrophages in neonatal mice results in scarring and fibrosis following MI. (B) In untreated pups, macrophages infiltrate the injured heart and are distributed uniformly throughout the heart (red) following MI. Macrophage infiltration into the heart is proposed to stimulate coronary neovascularization, via paracrine secretion of proangiogenic factors, to support myocardial regeneration. LAD, left anterior descending artery.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts