Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Altered responsiveness to chemokines due to targeted disruption of SHIP
Chang H. Kim, … , Gerald Krystal, Hal E. Broxmeyer
Chang H. Kim, … , Gerald Krystal, Hal E. Broxmeyer
Published December 15, 1999
Citation Information: J Clin Invest. 1999;104(12):1751-1759. https://doi.org/10.1172/JCI7310.
View: Text | PDF
Article Article has an altmetric score of 3

Altered responsiveness to chemokines due to targeted disruption of SHIP

  • Text
  • PDF
Abstract

SHIP has been implicated in negative signaling in a number of hematopoietic cell types and is postulated to downregulate phosphatidylinositol-3-kinase– (PI-3K–) initiated events in diverse receptor signaling pathways. Because PI-3K is implicated in chemokine signaling, we investigated whether SHIP plays any role in cellular responses to chemokines. We found that a number of immature and mature hematopoietic cells from SHIP-deficient mice manifested enhanced directional migration (chemotaxis) in response to the chemokines stromal cell–derived factor-1 (SDF-1) and B-lymphocyte chemoattractant (BLC). SHIP–/– cells were also more active in calcium influx and actin polymerization in response to SDF-1. However, colony formation by SHIP-deficient hematopoietic progenitor cell (HPCs) was not inhibited by 13 myelosuppressive chemokines that normally inhibit proliferation of HPCs. These altered biologic activities of chemokines on SHIP-deficient cells are not caused by simple modulation of chemokine receptor expression in SHIP-deficient mice, implicating SHIP in the modulation of chemokine-induced signaling and downstream effects.

Authors

Chang H. Kim, Giao Hangoc, Scott Cooper, Cheryl D. Helgason, Sandie Yew, R. Keith Humphries, Gerald Krystal, Hal E. Broxmeyer

×

Figure 6

Options: View larger image (or click on image) Download as PowerPoint
Chemokine receptor expression in leukocytes from SHIP-deficient (–) and ...
Chemokine receptor expression in leukocytes from SHIP-deficient (–) and wild-type (+) mice. Freshly isolated bone marrow cells (BM), spleen mononuclear cells (Spln), thymocytes (thym), and B220+ B cells (B cells; purity > 95%) from wild-type and SHIP-deficient mice were analyzed for expression of chemokine receptor mRNA by RNase protection assay. In addition to the chemokine receptors, L32 and GAPDH were included as internal controls. Expression of CC chemokine receptors is shown in a, and that of CXC chemokine receptors is shown in b. These results are representative of 3–4 reproducible experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
11 readers on Mendeley
See more details