Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Human IgG Fc domain engineering enhances antitoxin neutralizing antibody activity
Stylianos Bournazos, … , Arturo Casadevall, Jeffrey V. Ravetch
Stylianos Bournazos, … , Arturo Casadevall, Jeffrey V. Ravetch
Published January 9, 2014
Citation Information: J Clin Invest. 2014;124(2):725-729. https://doi.org/10.1172/JCI72676.
View: Text | PDF
Brief Report Immunology Article has an altmetric score of 31

Human IgG Fc domain engineering enhances antitoxin neutralizing antibody activity

  • Text
  • PDF
Abstract

The effector activity of antibodies is dependent on engagement with Fcγ receptors (FcγRs) and activation of the associated intracellular signaling pathways. Preclinical evaluation of therapeutic humanized or chimeric mAbs to study the interactions of their Fc regions with FcγRs is hampered by substantial structural and functional FcγR diversity among species. In this report, we used mice expressing only human FcγRs to evaluate the contribution of FcγR-mediated pathways to the neutralizing activity of an anti-anthrax toxin chimeric mAb. We observed that the protective activity of this mAb was highly dependent upon FcγR engagement, with minimal protection against anthrax toxin observed in FcγR-deficient mice following mAb administration. We generated anti-anthrax toxin mAbs with specific Fc domain variants with selectively enhanced affinity for particular human FcγRs and assessed their activity in FcγR-humanized mice. We determined that Fc domain variants that were capable of selectively engaging activating FcγRs substantially enhanced the in vitro and in vivo activity of anthrax toxin-neutralizing antibodies. These findings indicate that the application of Fc domain engineering is a feasible strategy to enhance toxin-neutralizing activity and suggest that engineered antitoxin antibodies will have improved therapeutic efficacy.

Authors

Stylianos Bournazos, Siu-Kei Chow, Nareen Abboud, Arturo Casadevall, Jeffrey V. Ravetch

×

Figure 3

Enhancement of the neutralization activity of anti-PA hIgG1 mAb through Fc domain engineering.

Options: View larger image (or click on image) Download as PowerPoint
Enhancement of the neutralization activity of anti-PA hIgG1 mAb through ...
Fc domain variants of 19D9 hIgG1 with differential binding capacity for the various classes of human FcγRs were generated and their neutralization activity was assessed both (A) in vitro and (B and C) in vivo. (A) LeTx-induced cytotoxicity was assessed in BMDMs in the presence of the different Fc domain variants of 19D9 hIgG1. n = 2; *P < 0.05, **P < 0.01, ***P < 0.001, vs. wild-type IgG1. (B) Enhanced in vivo protective activity of the G236A/S239D/A330L/I332E 19D9 hIgG1 variant in FcγR-humanized mice challenged with B. anthracis. Mice received the indicated mAb variant (350 μg) or PBS i.p. 3 hours prior to challenge. n = 11–12 per group; *P = 0.0094, compared with wild-type hIgG1 group. (C) The neutralization activity of 19D9 hIgG1 Fc domain variants (750 μg i.p.) with differential FcγR binding capacity was compared in humanized FcγR mice following challenge with B. anthracis. n = 10–12 per group; *P = 0.005, **P = 0.002, compared with N297A group.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 4 news outlets
Posted by 1 X users
Referenced in 1 patents
81 readers on Mendeley
See more details