Insulin and Zn2+ enjoy a multivalent relationship. Zn2+ binds insulin in pancreatic β cells to form crystalline aggregates in dense core vesicles (DCVs), which are released in response to physiological signals such as increased blood glucose. This transition metal is an essential cofactor in insulin-degrading enzyme and several key Zn2+ finger transcription factors that are required for β cell development and insulin gene expression. Studies are increasingly revealing that fluctuations in Zn2+ concentration can mediate signaling events, including dynamic roles that extend beyond that of a static structural or catalytic cofactor. In this issue of the
Thomas V. O’Halloran, Melkam Kebede, Steven J. Philips, Alan D. Attie
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 491 | 70 |
73 | 14 | |
Figure | 43 | 0 |
Table | 40 | 0 |
Citation downloads | 67 | 0 |
Totals | 714 | 84 |
Total Views | 798 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.