Respiratory syncytial virus (RSV) infection accounts for approximately 64 million cases of respiratory disease and 200,000 deaths worldwide each year, yet no broadly effective prophylactic or treatment regimen is available. RSV deploys paired, self-associating, heptad repeat domains of its fusion protein, RSV-F, to form a fusogenic 6-helix bundle that enables the virus to penetrate the host cell membrane. Here, we developed hydrocarbon double-stapled RSV fusion peptides that exhibit stabilized α-helical structure and striking proteolytic resistance. Pretreatment with double-stapled RSV peptides that specifically bound to the RSV fusion bundle inhibited infection by both laboratory and clinical RSV isolates in cells and murine infection models. Intranasal delivery of a lead double-stapled RSV peptide effectively prevented viral infection of the nares. A chitosan-based nanoparticle preparation markedly enhanced pulmonary delivery, further preventing progression of RSV infection to the lung. Thus, our results provide a strategy for inhibiting RSV infection by mucosal and endotracheal delivery of double-stapled RSV fusion peptides.
Gregory H. Bird, Sandhya Boyapalle, Terianne Wong, Kwadwo Opoku-Nsiah, Raminder Bedi, W. Christian Crannell, Alisa F. Perry, Huy Nguyen, Viviana Sampayo, Ankita Devareddy, Subhra Mohapatra, Shyam S. Mohapatra, Loren D. Walensky
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 455 | 71 |
109 | 38 | |
Figure | 261 | 14 |
Supplemental data | 41 | 1 |
Citation downloads | 60 | 0 |
Totals | 926 | 124 |
Total Views | 1,050 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.