Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Intravital imaging of podocyte calcium in glomerular injury and disease
James L. Burford, … , Stuart J. Shankland, János Peti-Peterdi
James L. Burford, … , Stuart J. Shankland, János Peti-Peterdi
Published April 8, 2014
Citation Information: J Clin Invest. 2014;124(5):2050-2058. https://doi.org/10.1172/JCI71702.
View: Text | PDF
Technical Advance Nephrology Article has an altmetric score of 19

Intravital imaging of podocyte calcium in glomerular injury and disease

  • Text
  • PDF
Abstract

Intracellular calcium ([Ca2+]i) signaling mediates physiological and pathological processes in multiple organs, including the renal podocyte; however, in vivo podocyte [Ca2+]i dynamics are not fully understood. Here we developed an imaging approach that uses multiphoton microscopy (MPM) to directly visualize podocyte [Ca2+]i dynamics within the intact kidneys of live mice expressing a fluorescent calcium indicator only in these cells. [Ca2+]i was at a low steady-state level in control podocytes, while Ang II infusion caused a minor elevation. Experimental focal podocyte injury triggered a robust and sustained elevation of podocyte [Ca2+]i around the injury site and promoted cell-to-cell propagating podocyte [Ca2+]i waves along capillary loops. [Ca2+]i wave propagation was ameliorated by inhibitors of purinergic [Ca2+]i signaling as well as in animals lacking the P2Y2 purinergic receptor. Increased podocyte [Ca2+]i resulted in contraction of the glomerular tuft and increased capillary albumin permeability. In preclinical models of renal fibrosis and glomerulosclerosis, high podocyte [Ca2+]i correlated with increased cell motility. Our findings provide a visual demonstration of the in vivo importance of podocyte [Ca2+]i in glomerular pathology and suggest that purinergic [Ca2+]i signaling is a robust and key pathogenic mechanism in podocyte injury. This in vivo imaging approach will allow future detailed investigation of the molecular and cellular mechanisms of glomerular disease in the intact living kidney.

Authors

James L. Burford, Karie Villanueva, Lisa Lam, Anne Riquier-Brison, Matthias J. Hackl, Jeffrey Pippin, Stuart J. Shankland, János Peti-Peterdi

×

Figure 1

Characterization of the new Pod-GCaMP3 mouse model and its utility for in vivo imaging of podocyte [Ca2+]i.

Options: View larger image (or click on image) Download as PowerPoint
Characterization of the new Pod-GCaMP3 mouse model and its utility for i...
(A–C) Immunofluorescence double labeling of GCaMP3 (A, green) and the podocyte marker podocin (B, red) in a Pod-GCaMP3 mouse glomerulus (G). (C) The overlay image shows colocalization (yellow; arrows), confirming the podocyte-specific expression of GCaMP3 in Pod-GCaMP3 mice. Nuclei were labeled with DAPI (blue). (D) In vivo MPM image of the intact mouse kidney, showing the overview of podocyte-specific expression of GCaMP3 (green) in 3 adjacent glomeruli (G1–G3). A magnified area is shown in the inset. Scale bars: 20 μm. Plasma was labeled red with albumin–Alexa Fluor 594. Nonspecific green autofluorescence was visible in proximal tubule segments around the glomeruli. (E) Representative time-lapse recordings of GCaMP3 F/F0 in single podocytes in control and during bolus Ang II injection or laser-induced podocyte injury. When the laser was used to trigger injury, GCaMP3 imaging was paused; thus, imaging for the same podocyte was noncontiguous (dashed line). (F) Changes in podocyte GCaMP3 Fmax/F0 in response to Ang II (n = 15 glomeruli from n = 5 mice) or laser-induced podocyte injury (n = 21 glomeruli from n = 9 mice), either alone or with AT1 receptor blockade with losartan (n = 5 glomeruli per losartan group from n = 4 mice). Data represent mean ± SEM. *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Blogged by 1
Posted by 1 X users
Highlighted by 1 platforms
73 readers on Mendeley
See more details