Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Osteopenia and decreased bone formation in osteonectin-deficient mice
A.M. Delany, … , R. Baron, E. Canalis
A.M. Delany, … , R. Baron, E. Canalis
Published April 1, 2000
Citation Information: J Clin Invest. 2000;105(7):915-923. https://doi.org/10.1172/JCI7039.
View: Text | PDF | Corrigendum
Article Article has an altmetric score of 6

Osteopenia and decreased bone formation in osteonectin-deficient mice

  • Text
  • PDF
Abstract

Bone continuously remodels in response to mechanical and physiological stresses, allowing vertebrates to renew bone as adults. Bone remodeling consists of the cycled synthesis and resorption of collagenous and noncollagenous extracellular matrix proteins, and an imbalance in this process can lead to disease states such as osteoporosis, or more rarely, osteopetrosis. There is evidence that the extracellular matrix glycoprotein osteonectin or secreted protein acidic and rich in cysteine (BM-40) may be important in bone remodeling. Osteonectin is abundant in bone and is expressed in areas of active remodeling outside the skeleton. In vitro studies indicate that osteonectin can bind collagen and regulate angiogenesis, metalloproteinase expression, cell proliferation, and cell-matrix interactions. In some osteopenic states, such as osteogenesis imperfecta and selected animal models for bone fragility, osteonectin expression is decreased. To determine the function of osteonectin in bone, we used contact x-ray, histomorphometry, and Northern blot analysis to characterize the skeletal phenotype of osteonectin-null mice. We found that osteonectin-null mice have decreased bone formation and decreased osteoblast and osteoclast surface and number, leading to decreased bone remodeling with a negative bone balance and causing profound osteopenia. These data indicate that osteonectin supports bone remodeling and the maintenance of bone mass in vertebrates.

Authors

A.M. Delany, M. Amling, M. Priemel, C. Howe, R. Baron, E. Canalis

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 1,043 95
PDF 109 14
Figure 260 6
Table 83 0
Citation downloads 82 0
Totals 1,577 115
Total Views 1,692
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
129 readers on Mendeley
See more details