Atrial fibrillation (AF) is characterized by sustained high atrial activation rates and arrhythmogenic cellular Ca2+ signaling instability; however, it is not clear how a high atrial rate and Ca2+ instability may be related. Here, we characterized subcellular Ca2+ signaling after 5 days of high atrial rates in a rabbit model. While some changes were similar to those in persistent AF, we identified a distinct pattern of stabilized subcellular Ca2+ signaling. Ca2+ sparks, arrhythmogenic Ca2+ waves, sarcoplasmic reticulum (SR) Ca2+ leak, and SR Ca2+ content were largely unaltered. Based on computational analysis, these findings were consistent with a higher Ca2+ leak due to PKA-dependent phosphorylation of SR Ca2+ channels (RyR2s), fewer RyR2s, and smaller RyR2 clusters in the SR. We determined that less Ca2+ release per [Ca2+]i transient, increased Ca2+ buffering strength, shortened action potentials, and reduced L-type Ca2+ current contribute to a stunning reduction of intracellular Na+ concentration following rapid atrial pacing. In both patients with AF and in our rabbit model, this silencing led to failed propagation of the [Ca2+]i signal to the myocyte center. We conclude that sustained high atrial rates alone silence Ca2+ signaling and do not produce Ca2+ signaling instability, consistent with an adaptive molecular and cellular response to atrial tachycardia.
Maura Greiser, Benoît-Gilles Kerfant, George S.B. Williams, Niels Voigt, Erik Harks, Katharine M. Dibb, Anne Giese, Janos Meszaros, Sander Verheule, Ursula Ravens, Maurits A. Allessie, James S. Gammie, Jolanda van der Velden, W. Jonathan Lederer, Dobromir Dobrev, Ulrich Schotten
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 523 | 41 |
80 | 22 | |
Figure | 423 | 17 |
Supplemental data | 38 | 3 |
Citation downloads | 64 | 0 |
Totals | 1,128 | 83 |
Total Views | 1,211 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.