Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling
William Grossman, Walter J. Paulus
William Grossman, Walter J. Paulus
Published September 3, 2013
Citation Information: J Clin Invest. 2013;123(9):3701-3703. https://doi.org/10.1172/JCI69830.
View: Text | PDF
Hindsight

Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling

  • Text
  • PDF
Abstract

Pressure and volume overload results in concentric and eccentric hypertrophy of cardiac ventricular chambers with, respectively, parallel and series replication of sarcomeres. These divergent patterns of hypertrophy were related 40 years ago to disparate wall stresses in both conditions, with systolic wall stress eliciting parallel replication of sarcomeres and diastolic wall stress, series replication. These observations are relevant to clinical practice, as they relate to the excessive hypertrophy and contractile dysfunction regularly observed in patients with aortic stenosis. Stress-sensing mechanisms in cardiomyocytes and activation of cardiomyocyte death by elevated wall stress continue to intrigue cardiovascular scientists.

Authors

William Grossman, Walter J. Paulus

×

Figure 1

Schematic overview of the development of concentric hypertrophy with the parallel addition of sarcomeres in pressure overload and of eccentric hypertrophy with a series addition of sarcomeres in volume overload.

Options: View larger image (or click on image) Download as PowerPoint
Schematic overview of the development of concentric hypertrophy with the...
Chamber enlargement increases systolic wall stress in volume overload (dashed black arrow indicates positive feedback). Wall thickening induces concentric hypertrophy in pressure overload and contributes to eccentric hypertrophy in volume overload (blue arrow). Concentric hypertrophy reduces systolic wall stress in pressure overload, and eccentric hypertrophy reduces diastolic wall stress in volume overload (dashed red lines indicate negative feedback).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts