Studies have established that pigmentation can provide strong, protective effects against certain human diseases. For example, angiogenesis-dependent diseases such as wet age-related macular degeneration and infantile hemangioma are more common in light-skinned individuals of mixed European descent than in African-Americans. Here we found that melanocytes from light-skinned humans and albino mice secrete high levels of fibromodulin (FMOD), which we determined to be a potent angiogenic factor. FMOD treatment stimulated angiogenesis in numerous in vivo systems, including laser-induced choroidal neovascularization, growth factor–induced corneal neovascularization, wound healing, and Matrigel plug assays. Additionally, FMOD enhanced vascular sprouting during normal retinal development. Deletion of
Irit Adini, Kaustabh Ghosh, Avner Adini, Zai-Long Chi, Takeru Yoshimura, Ofra Benny, Kip M. Connor, Michael S. Rogers, Lauren Bazinet, Amy E. Birsner, Diane R. Bielenberg, Robert J. D’Amato
FMOD-induced migration, proliferation and sprouting of HMVECs.