The autosomal dominantly inherited east Texas bleeding disorder is linked to an A2440G variant in exon 13 of the F5 gene. Affected individuals have normal levels of coagulation factor V (FV) activity, but demonstrate inhibition of global coagulation tests. We demonstrated that the A2440G mutation causes upregulation of an alternatively spliced F5 transcript that results in an in-frame deletion of 702 amino acids of the large activation fragment, the B domain. The approximately 250-kDa FV isoform (FV-short), which can be fully activated by thrombin, is present in all A2440G carriers’ plasma (n = 16). FV-short inhibits coagulation through an indirect mechanism by forming a complex with tissue factor pathway inhibitor-α (TFPIα), resulting in an approximately 10-fold increase in plasma TFPIα, suggesting that the TFPIα:FV-short complexes are retained in circulation. The TFPIα:FV-short complexes efficiently inhibit thrombin generation of both intrinsic and extrinsic coagulation pathways. These data demonstrate that the east Texas bleeding disorder–associated F5A2440G leads to the formation of the TFPIα:FV-short complex, which inhibits activation and propagation of coagulation.
Authors
Lisa M. Vincent, Sinh Tran, Ruzica Livaja, Tracy A. Bensend, Dianna M. Milewicz, Björn Dahlbäck
Mixtures of rTFPIα (0.5 or 5 nM) and rFV-short (0.5 or 5 nM) ± plasma-derived FV (5 or 20 nM) were incubated overnight in a total volume of 100 μl and then subjected to immunoprecipitation with Streptavidin-coated magnetic beads (300 μl) carrying biotinylated polyclonal antibodies against TFPI (AHTFPI-S). The bead pellets were eluted with 33 μl sample preparation buffer, 10 μl being loaded to the gel. The pellets, the start mixes, and the supernatants (1 μl each) were analyzed by immunoblotting for (A) FV (AHV-5146) and (B) TFPI (AHTFPI-5138).