Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk
Fleur Lien, … , Bart Staels, Philippe Lefebvre
Fleur Lien, … , Bart Staels, Philippe Lefebvre
Published February 17, 2014
Citation Information: J Clin Invest. 2014;124(3):1037-1051. https://doi.org/10.1172/JCI68815.
View: Text | PDF
Research Article Metabolism Article has an altmetric score of 10

Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk

  • Text
  • PDF
Abstract

The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry–based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis.

Authors

Fleur Lien, Alexandre Berthier, Emmanuel Bouchaert, Céline Gheeraert, Jeremy Alexandre, Geoffrey Porez, Janne Prawitt, Hélène Dehondt, Maheul Ploton, Sophie Colin, Anthony Lucas, Alexandre Patrice, François Pattou, Hélène Diemer, Alain Van Dorsselaer, Christophe Rachez, Jelena Kamilic, Albert K. Groen, Bart Staels, Philippe Lefebvre

×

Figure 6

FXR activity is specifically inhibited by the LKB1/AMPK pathway.

Options: View larger image (or click on image) Download as PowerPoint
FXR activity is specifically inhibited by the LKB1/AMPK pathway.
(A) hFX...
(A) hFXR is phosphorylated by AMPK in vitro. Partially purified GST-hFXRα2 or His6-tagged hFXRα3 and wtAMPK were incubated with 32P-ATP. (B) KNG, BSEP, FGF19, and SHP mRNA levels in FXR-, PGC1α-, SMRT-, SIRT1, or AMPK-depleted HepG2 cells. mRNA levels in siRNA-transfected cells treated with 2 μM GW4064 are expressed relative to control levels in siRNA-treated cells (set at 100%). (C) AMPK activation in HepG2 cells. Whole-cell extracts from AICAR and/or GW4064-treated cells were analyzed by Western blot using the indicated antibodies. (D) Repression of FXR activity requires a functional AMPK pathway. KNG mRNA levels were monitored in siRNA-transfected HepG2 cells. Results are expressed relative to the basal level (DMSO) set at 1. (E) AMPK activators inhibits FXRE-bound RXR/FXR heterodimers. HepG2 cells were transfected with either the reference pGL3-tk Luc reporter vector, or the same vector driven by the human SHP (pSHP-tk Luc) or KNG (pKNG-tk Luc) FXREs and expression plasmids encoding human flhRXRα and flFXRα2. Values represent the fold activation over the activity of pGL3-tk Luc alone set to 1. (F) AMPK activators block Gal4-FXR activity. HepG2 cells were transfected with the Gal4-tk Luc reporter gene and Gal4-DBD, or Gal4-DBD fused to human flFXRα2 (Gal4-FXR), flRXRα (Gal4-RXRα), or flLXRα (Gal4-LXRα) and flLXRβ (Gal4-LXRβ) Gal4 expression vectors. Cells were treated for 24 hours after transfection, and results are expressed as in E. *P < 0.05; **P < 0.01; ***P < 0.005.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
141 readers on Mendeley
See more details