Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
NF-κB–mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia
Wei A. He, … , Federica Montanaro, Denis C. Guttridge
Wei A. He, … , Federica Montanaro, Denis C. Guttridge
Published October 1, 2013
Citation Information: J Clin Invest. 2013;123(11):4821-4835. https://doi.org/10.1172/JCI68523.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 64

NF-κB–mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia

  • Text
  • PDF
Abstract

Cachexia is a debilitating condition characterized by extreme skeletal muscle wasting that contributes significantly to morbidity and mortality. Efforts to elucidate the underlying mechanisms of muscle loss have predominantly focused on events intrinsic to the myofiber. In contrast, less regard has been given to potential contributory factors outside the fiber within the muscle microenvironment. In tumor-bearing mice and patients with pancreatic cancer, we found that cachexia was associated with a type of muscle damage resulting in activation of both satellite and nonsatellite muscle progenitor cells. These muscle progenitors committed to a myogenic program, but were inhibited from completing differentiation by an event linked with persistent expression of the self-renewing factor Pax7. Overexpression of Pax7 was sufficient to induce atrophy in normal muscle, while under tumor conditions, the reduction of Pax7 or exogenous addition of its downstream target, MyoD, reversed wasting by restoring cell differentiation and fusion with injured fibers. Furthermore, Pax7 was induced by serum factors from cachectic mice and patients, in an NF-κB–dependent manner, both in vitro and in vivo. Together, these results suggest that Pax7 responds to NF-κB by impairing the regenerative capacity of myogenic cells in the muscle microenvironment to drive muscle wasting in cancer.

Authors

Wei A. He, Emanuele Berardi, Veronica M. Cardillo, Swarnali Acharyya, Paola Aulino, Jennifer Thomas-Ahner, Jingxin Wang, Mark Bloomston, Peter Muscarella, Peter Nau, Nilay Shah, Matthew E.R. Butchbach, Katherine Ladner, Sergio Adamo, Michael A. Rudnicki, Charles Keller, Dario Coletti, Federica Montanaro, Denis C. Guttridge

×

Figure 2

Cancer cachexia is associated with activation and myogenic commitment of satellite cells.

Options: View larger image (or click on image) Download as PowerPoint
Cancer cachexia is associated with activation and myogenic commitment of...
(A) GAST from control and C-26 and LLC tumor–bearing mice blotted for Pax7. Numbers above lanes represent Pax7 quantitation by ImageJ, normalized to α-tubulin. (B) Top: GAST sections probed for Pax7 and α-laminin. Similar results were observed in TA and QUAD. DAPI was used to counterstain nuclei (blue). Insets show 1 Pax7+ cell each at higher magnification (enlarged ×9). Bottom: Isolated myofibers probed for Pax7 and DAPI (blue). Arrows denote Pax7+ cells. (C) Quantitation of Pax7+ cells from single fibers from control and C-26 mice. (D) Cross-sections of muscle biopsies from NC and PC patients, with weight loss as indicated, scored for Pax7+ cells. Quantitation was performed from 20 random fields, counting a minimum of 1,000 fibers per sample. Dashed red line denotes the baseline value of Pax7+ cells in NC patients. (E) Muscles were harvested in duplicate experiments after C-26 administration. Western blots were performed, probing for markers of satellite cells (Pax7), myoblasts (phospho- and total p38, desmin, and MyoD), and differentiation (MyoD and myogenin). Blot was reprobed for α-tubulin. (F) Single fibers were double stained for Pax7 and BrdU. Nuclei were counterstained with DAPI. (G) Quantitation of Pax7+BrdU+ cells in F. Scale bars: 10 μm (B, top); 50 μm (B, bottom); 20 μm (F). ***P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 8 news outlets
Blogged by 1
Posted by 3 X users
294 readers on Mendeley
See more details