Patients with ovarian cancer are at high risk of tumor recurrence. Prediction of therapy outcome may provide therapeutic avenues to improve patient outcomes. Using reverse-phase protein arrays, we generated ovarian carcinoma protein expression profiles on 412 cases from TCGA and constructed a PRotein-driven index of OVARian cancer (PROVAR). PROVAR significantly discriminated an independent cohort of 226 high-grade serous ovarian carcinomas into groups of high risk and low risk of tumor recurrence as well as short-term and long-term survivors. Comparison with gene expression–based outcome classification models showed a significantly improved capacity of the protein-based PROVAR to predict tumor progression. Identification of protein markers linked to disease recurrence may yield insights into tumor biology. When combined with features known to be associated with outcome, such as
Ji-Yeon Yang, Kosuke Yoshihara, Kenichi Tanaka, Masayuki Hatae, Hideaki Masuzaki, Hiroaki Itamochi, Masashi Takano, Kimio Ushijima, Janos L. Tanyi, George Coukos, Yiling Lu, Gordon B. Mills, Roel G.W. Verhaak
This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.
PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.
Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.