Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Virgin birth: engineered heart muscle from parthenogenetic stem cells
Sara J. McSweeney, Michael D. Schneider
Sara J. McSweeney, Michael D. Schneider
Published February 22, 2013
Citation Information: J Clin Invest. 2013;123(3):1010-1013. https://doi.org/10.1172/JCI67961.
View: Text | PDF
Commentary Article has an altmetric score of 24

Virgin birth: engineered heart muscle from parthenogenetic stem cells

  • Text
  • PDF
Abstract

Cardiac muscle restitution, or true regeneration, is an unmet need in the treatment of myocardial infarction (MI), prompting a decade of study with stem cells of many kinds. Among key obstacles to effective cardiac cell grafting are the cost of autologous stem cell–derived cardiomyocytes, the ethical implications of using embryonic stem cell (ESC) products, immunological barriers to allogeneic cells, functional maturation beyond just the correct lineage decision, and the lack of durable engraftment. In this issue of the JCI, Didié and colleagues show that cardiomyocytes made from parthenogenetic stem cells (PSCs) and deployed as engineered heart muscle (EHM) may overcome all of these formidable barriers.

Authors

Sara J. McSweeney, Michael D. Schneider

×

Figure 1

EHM from PSC-derived cardiomyocytes.

Options: View larger image (or click on image) Download as PowerPoint
EHM from PSC-derived cardiomyocytes.
(Above) PSCs and ESCs are produced ...
(Above) PSCs and ESCs are produced from oocytes arrested in meiosis II and stimulated to form a zygote, either by fertilization by sperm (ESC) or artificially with strontium chloride (PSC). In the production of ECSs, a polar body containing one set of the maternal genome is subsequently extruded as a polar body, whereas in PSC production this is prevented by cytochalasin B. Both processes result in 2 copies of the genome, although in the case of PSCs both are from the mother. PSCs, being uniparental in origin, are advantageous for immunological matching. From this stage onward, the production of stem cells from the parthenote follows that from embryos. The ICM of the blastocyst is removed and plated on mouse embryonic fibroblasts (MEFs), outgrowths are isolated, and embryoid bodies are grown in hanging drops. Undifferentiated or differentiated cells are then used for analysis in vitro and in vivo. (Below) Stem cells having made the lineage decision to become cardiomyocytes are induced to undergo functional maturation by a tissue-engineering approach including static mechanical stretch and inclusion of nonmyocytes. The use of EHM also promotes persistent engraftment after MI.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Blogged by 1
Posted by 1 X users
On 5 Facebook pages
20 readers on Mendeley
See more details