Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hyaluronan digestion controls DC migration from the skin
Jun Muto, … , Ajit Varki, Richard L. Gallo
Jun Muto, … , Ajit Varki, Richard L. Gallo
Published February 3, 2014
Citation Information: J Clin Invest. 2014;124(3):1309-1319. https://doi.org/10.1172/JCI67947.
View: Text | PDF
Research Article Immunology

Hyaluronan digestion controls DC migration from the skin

  • Text
  • PDF
Abstract

The breakdown and release of hyaluronan (HA) from the extracellular matrix has been hypothesized to act as an endogenous signal of injury. To test this hypothesis, we generated mice that conditionally overexpressed human hyaluronidase 1 (HYAL1). Mice expressing HYAL1 in skin either during early development or by inducible transient expression exhibited extensive HA degradation, yet displayed no evidence of spontaneous inflammation. Further, HYAL1 expression activated migration and promoted loss of DCs from the skin. We subsequently determined that induction of HYAL1 expression prior to topical antigen application resulted in a lack of an antigenic response due to the depletion of DCs from the skin. In contrast, induction of HYAL1 expression concurrent with antigen exposure accelerated allergic sensitization. Administration of HA tetrasaccharides, before or simultaneously with antigen application, recapitulated phenotypes observed in HYAL1-expressing animals, suggesting that the generation of small HA fragments, rather than the loss of large HA molecules, promotes DC migration and subsequent modification of allergic responses. Furthermore, mice lacking TLR4 did not exhibit HA-associated phenotypes, indicating that TLR4 mediates these responses. This study provides direct evidence that HA breakdown controls the capacity of the skin to present antigen. These events may influence DC function in injury or disease and have potential to be exploited therapeutically for modification of allergic responses.

Authors

Jun Muto, Yasuhide Morioka, Kenshi Yamasaki, Margaret Kim, Andrea Garcia, Aaron F. Carlin, Ajit Varki, Richard L. Gallo

×

Figure 1

Generation of HYAL1-overexpressing mice.

Options: View larger image (or click on image) Download as PowerPoint
Generation of HYAL1-overexpressing mice.
 
(A) Schematic for conditional...
(A) Schematic for conditional overexpression of HYAL1. Filled triangles represent loxP sites. (B) Fluorescence images of transgenic mouse pups (approximately 2 days old) expressing GFP (CAG-GFPfloxed-HYAL1 Tg mice: CAG-GFP and EIIa/HYAL1 mice) and EIIa-Cre mice. (C) Quantitative PCR demonstrating HYAL1 overexpression in normal skin from EIIa/HYAL1 mice and control (CAG-GFP) mice (*P < 0.05; n = 6). (D) Frozen sections of skin from HYAL1-overexpressing (K14/HYAL1) and control (CAG-GFP) mice were stained with an antibody recognizing HYAL1 (red). Scale bar: 100 μm; n = 5 per group. (E) HA immunostaining. Frozen sections of skin from EIIa/HYAL1 mice and control EIIa-Cre mice were stained with HABP and FITC-streptoavidin (green) and DAPI for nuclei (blue). Scale bar: 100 μm; n = 5 per group. (F) The size distribution of HA extracted from skin, as analyzed by agarose gel electrophoresis. A similar total amount of HA was loaded in each lane, as determined by carbazole assay. Gel was stained with Stains-All. Lane 1, molecular weight markers; lane 2, HA extracted from the skin of control EIIa-Cre mice; lane 3, HA extracted from skin of HYAL1-expressing (EIIa/HYAL1) mice shows decrease in average detectable size to <27 kDa; lane 4, human umbilical cord HA as standard. (G) Skin of control (CAG-GFP) mice and HYAL1-overexpressing (EIIa/HYAL1) mice stained with H&E. Scale bar: 100 μm. Data are representative of 3 independent experiments with similar results.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts